

ASSESSMENT OF WATER POLLUTION IN TAUNGTHAMAN LAKE

Dr Aye Myat Mon Lecturer

Department of Physics, Yadanarbon University

14 March, 2017

Concentration of heavy metals except Cr

Abstract

- sediment after water pollution > within water pollution
- Nal (TI) gamma ray spectrometer -the existence of Gamma-Vision 32 Software radionuclides
- ²³⁴Th, ²¹²Pb, ²¹⁴Pb, ²⁰⁸Tl, ²²⁸Ac and ⁴⁰K

- Air and water pollution
- Pollution levels
- heavy metal pollution
 by the EDXRF method
- radionuclides
 by the Gamma Spectroscopy.
- ENP Laboratory Physics Department, MU
- Sediment during waste water flooding and sinking at a fixed location under U Shwe Tun bridge in Taungthaman near Yadanabon University
- sample location is seemed to be an entrance of the waste water from the factories.

Sample Location (Sampling Site)

3

Lat 21° 53′ 59.25′′ (N), Long 96° 04′ 34.67′′ (E)

3.1 Materials and Methods

Sample Collection

Sediment \rightarrow a 2-inches in diameter and 2 feet length pipe from the ground and taking 1 feet length sediment from the depth

3.2 Materials and Methods

Photograph of Experimental Arrangement for XEPOS Spectrometer Detection System

Materials and Methods

Calibratin for Gamma spectroscopy

Element	Channel	Energy(keV)
Am	50	60
Cs	511	662
Mn	642	835
Со	892	1173
Со	1010	1332

3.3

3.4 Materials and Methods

Experimental Procedure in Gamma Transmission Measurement for Sediment Samples

- 1. Two Sediment Samples
- 2. Four standard gamma sources(²⁴¹Am, ⁶⁰Co , ²⁵ Mn and ¹³⁷Cs) energy calibration 300s 60 keV 1173keV 835keV 662keV 1332keV
- 3. Model 296 NaI (Tl) detector
- 4. Model 671 Spectroscopy Amplifier
- 5. Gamma Vision-32 Software installed
- in PC with MCA Card
- **Operating Voltage=1000 V**
- **Conversion gain=2048**
- Coarse gain=20,Fine gain= 8.7
- Shaping time=1µs
- Real time-15000 s,Live time=7200 s

Fig (1)Experimental Arrangement for Detecting System

Materials and Methods

3.5

Fig(2)sediment sample in the lead shield

BG counting time 2 hour Sample counting time

Fig(1) Top view for sediment sample in the lead shield

after water pollution > within water pollution

EDXRF Analysis

- Mn, Fe, Ni, Cu, Zn, As and Pb except Cr
- Fe is extremely higher than other heavy metals
- K and Tl

Gamma Analysis

- ²³⁴Th, ²¹²Pb, ²¹⁴Pb, ²⁰⁸Tl, ²²⁸Ac and ⁴⁰K
- Net count rates
- ²⁰⁸Tl and ²²⁸Ac are daughter nuclei in ²³²Th decay series
- ²¹⁴Pb and ²³⁴Th daughter nuclei in the ²³⁸U decay series

4.1 **Results and Discussions**

Table (1) Concentration of heavy metals in sediment sample within water pollution

Sr. No	Heavy Metals	Concentration	
		S1 (%)	S1 (ppm)
1	Cr	0.00815	81.5
2	Mn	0.03997	399.7
3	Fe	3.168	31680
4	Ni	0.00087	8.7
5	Cu	0.00380	38
6	Zn	0.01098	109.8
7	As	0.00051	5.1
8	Pb	0.00411	41.1

Figure (1) The Comperison of heavy metals in sediment sample within water pollution

4.2 **Results and Discussions**

Table (2) Concentration of heavy metals in sediment sample after water pollution

Sr. No	Heavy Metals	Concentration		
		S1 (%)	S1 (ppm)	
1	Cr	0.00769	76.9	
2	Mn	0.04206	420.6	
3	Fe	3.368	33680	
4	Ni	0.00093	9.3	
5	Cu	0.00459	45.9	
6	Zn	0.01296	129.6	
7	As	0.00061	6.1	
8	Pb	0.00431	43.1	

Figure (2) The Comperison of heavy metals in sediment sample after water pollution

4.3 **Results and Discussions**

Table (3)The analyzed data for sediment within water pollution

Radionuclide	Energy (keV)	Gross Area Counts	Net Area Conts
²³⁴ Th	69.92	60342	5656 ± 280
²¹² Pb	238.89	33509	1849 ± 275
²¹² Pb	300.08	22654	1019 ± 283
²¹⁴ Pb	352.28	8946	382 ± 181
²⁰⁸ Tl	582.99	22412	3735 ± 432
²²⁸ Ac	911.51	17430	2926 ± 509
⁴⁰ K	1464.93	13785	7053 ± 391

Table (4) The analysed data for sedimentafter water pollution

Radionuclide	Energy (keV)	Gross Area Counts	Net Area Conts
²³⁴ Th	69.92	65493	6243 ± 308
²¹² Pb	238.89	35577	2100 ± 283
²¹² Pb	300.08	23396	1351 ± 286
²¹⁴ Pb	352.28	9156	404 ± 163
²⁰⁸ Tl	582.99	23321	4298 ± 437
²²⁸ Ac	911.51	18779	3622 ± 520
⁴⁰ K	1464.93	14559	8507 ± 373

Conclusions

- Heavy metals except Cr
- Fe> Mn > Zn > Cr > Pb > Cu > Ni > As to EDXRF technique

- Radionuclides found in the measured samples were the products of ²³⁸U and ²³²Th natural radioactive series.
- Identification of radionuclides can be clearly analyzed by using good resolution detector.
- Further studies will be undertaken for several years to detect the status of these elements in sediment.

